Congruences Involving Sums of Ratios of Lucas Sequences

نویسنده

  • Evis Ieronymou
چکیده

Given a pair (Ut) and (Vt) of Lucas sequences, we establish various congruences involving sums of ratios Vt Ut . More precisely, let p be a prime divisor of the positive integer m. We establish congruences, modulo powers of p, for the sum ∑ Vt Ut , where t runs from 1 to r(m), the rank of m, and r(q) ∤ t for all prime factors q of m.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Congruences for Central Binomial Sums Involving Fibonacci and Lucas Numbers

We present several polynomial congruences about sums with central binomial coefficients and harmonic numbers. In the final section we collect some new congruences involving Fibonacci and Lucas numbers.

متن کامل

Congruences Involving Binomial Coefficients and Lucas Sequences

In this paper we obtain some congruences involving central binomial coefficients and Lucas sequences. For example, we show that if p > 5 is a prime then p−1

متن کامل

Families of Sequences From a Class of Multinomial Sums

In this paper we obtain formulas for certain sums of products involving multinomial coefficients and Fibonacci numbers. The sums studied here may be regarded as generalizations of the binomial transform of the sequence comprising the even-numbered terms of the Fibonacci sequence. The general formulas, involving both Fibonacci and Lucas numbers, give rise to infinite sequences that are parameter...

متن کامل

ON q-ANALOG OF WOLSTENHOLME TYPE CONGRUENCES FOR MULTIPLE HARMONIC SUMS

Multiple harmonic sums are iterated generalizations of harmonic sums. Recently Dilcher has considered congruences involving q-analogs of these sums in depth one. In this paper we shall study the homogeneous case for arbitrary depth by using generating functions and shuffle relations of the q-analog of multiple harmonic sums. At the end, we also consider some non-homogeneous cases.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014