Congruences Involving Sums of Ratios of Lucas Sequences
نویسنده
چکیده
Given a pair (Ut) and (Vt) of Lucas sequences, we establish various congruences involving sums of ratios Vt Ut . More precisely, let p be a prime divisor of the positive integer m. We establish congruences, modulo powers of p, for the sum ∑ Vt Ut , where t runs from 1 to r(m), the rank of m, and r(q) ∤ t for all prime factors q of m.
منابع مشابه
Some Congruences for Central Binomial Sums Involving Fibonacci and Lucas Numbers
We present several polynomial congruences about sums with central binomial coefficients and harmonic numbers. In the final section we collect some new congruences involving Fibonacci and Lucas numbers.
متن کاملCongruences Involving Binomial Coefficients and Lucas Sequences
In this paper we obtain some congruences involving central binomial coefficients and Lucas sequences. For example, we show that if p > 5 is a prime then p−1
متن کاملCongruences of Multiple Sums Involving Sequences Invariant Under the Binomial Transform
We prove several congruences modulo a power of a prime, such as
متن کاملFamilies of Sequences From a Class of Multinomial Sums
In this paper we obtain formulas for certain sums of products involving multinomial coefficients and Fibonacci numbers. The sums studied here may be regarded as generalizations of the binomial transform of the sequence comprising the even-numbered terms of the Fibonacci sequence. The general formulas, involving both Fibonacci and Lucas numbers, give rise to infinite sequences that are parameter...
متن کاملON q-ANALOG OF WOLSTENHOLME TYPE CONGRUENCES FOR MULTIPLE HARMONIC SUMS
Multiple harmonic sums are iterated generalizations of harmonic sums. Recently Dilcher has considered congruences involving q-analogs of these sums in depth one. In this paper we shall study the homogeneous case for arbitrary depth by using generating functions and shuffle relations of the q-analog of multiple harmonic sums. At the end, we also consider some non-homogeneous cases.
متن کامل